

American Institute of Aeronautics and Astronautics

1

Exact and Heuristic Algorithms for Runway Scheduling

Waqar A. Malik*
University of California Santa Cruz, NASA Ames Research Center, Moffett Field, CA, 94035, USA

Yoon C. Jung†
NASA Ames Research Center, Moffett Field, CA, 94035, USA

This paper explores the Single Runway Scheduling (SRS) problem with arrivals,
departures, and crossing aircraft on the airport surface. Constraints for wake vortex
separations, departure area navigation separations and departure time window restrictions
are explicitly considered. The main objective of this research is to develop exact and
heuristic based algorithms that can be used in real-time decision support tools for Air
Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic
programming (DP) based algorithm that finds the exact solution to the SRS problem, but
may prove unusable for application in real-time environment due to large computation times
for moderate sized problems. We next propose a second algorithm that uses heuristics to
restrict the search space for the DP based algorithm. A third algorithm based on a
combination of insertion and local search (ILS) heuristics is then presented. Simulation
conducted for the east side of Dallas/Fort Worth International Airport allows comparison of
the three proposed algorithms and indicates that the ILS algorithm performs favorably in its
ability to find efficient solutions and its computation times.

I. Introduction
eeting the projected increase in air traffic demand within the National Airspace System (NAS) requires
improvements in all areas of air traffic management. Airports, being the origin or destination of the air traffic

network, encounter some of the highest traffic density in the NAS. During peak periods at major airports, capacity
limitations on the airport surface area create bottlenecks and cause delays to both departures and arrivals. This
congestion effect and the associated delays persist for a significant part of the peak period, and often restrict an
airport’s throughput by hampering runway operations. Idris et al.1 observed that a majority of airport surface delay
was incurred at the runways.

The observed congestion and delay at the airport runways have spurred recent research in finding efficient
solutions for runway use. For the general runway scheduling problem, these solutions specify the schedule for each
aircraft to use the runway: the wheels-off times for departing aircraft, the wheels-on times for arriving aircraft and
the crossing times for aircraft that need to cross an active runway. Moreover, the solutions to the runway scheduling
problem have to satisfy numerous physical and operational constraints, such as wake-vortex separation for
successive departures, miles-in-trail restrictions over certain departure fixes, and time-window constraints for some
departure aircraft. The runway scheduling problem also depends on the layout of the runway system: the operations
on parallel runways (that are close together) or intersecting runways must be coordinated, and the actual separation
requirements depend on the exact layout and use of the runways.

The runway scheduling problem is structurally equivalent to a job shop scheduling problem.2-4 The runways
represent the machines, and the aircraft represent the jobs. The required separation times between pairs of aircraft on
the same runway are the (sequence dependent) processing times. The earliest possible time an aircraft can use the
runway represents the release time of the job and the latest, the due date. A common objective is to minimize the
completion time (runway-use time) of the last job, which is equivalent to maximizing throughput. Hence, many of
the solution techniques commonly used for solving the job shop scheduling problems have been adapted to the
runway scheduling problem; e.g., mixed integer linear programs,5-6 branch and bound,7 dynamic programming,8-13

* Research Scientist, University Affiliated Research Center, MS 210-8, Moffett Field, CA 94035.
† Aerospace Engineer, NASA Ames Research Center, MS 210-6, Moffett Field, CA 94035, AIAA senior member.

M

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

 16th AIAA Aviation Technology, Integration, and Operations Conference

 13-17 June 2016, Washington, D.C.

 AIAA 2016-4072

 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

 AIAA Aviation
https://ntrs.nasa.gov/search.jsp?R=20180002159 2018-07-24T12:00:32+00:00Z

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2016-4072&domain=pdf&date_stamp=2016-06-10

American Institute of Aeronautics and Astronautics

2

heuristics,14-16 metaheuristics,17-18 and others. The sequence dependent job shop scheduling problem is strongly NP-
hard, and consequently, it is not expected to find polynomial time algorithms for the runway scheduling problem.

The majority of the prior papers on runway scheduling have looked at subsets of the general runway scheduling
problems: the single runway scheduling for arrivals (arrivals scheduling problem) or departures (departures
scheduling problem). Researchers have also made several simplifications to the problem to make it computationally
tractable. Bianco et al.4 have relaxed the wake turbulence separation criteria and scheduling between successive
aircraft is based on a constant separation time rather than separation based on aircraft weight class. Researchers have
also proposed the idea of constrained position shifting14 that limits the number of positions an aircraft can occupy in
a sequence. This reduces the available solution space and leads to computationally tractable solutions. Bennell et
al.19 provide a comprehensive review of airport runway scheduling.

Over the last few years, NASA Ames Research Center has developed the Spot and Runway Departure Advisor
(SARDA) concept as a Decision Support Tool (DST) for surface management. The SARDA concept provides
aircraft specific sequence and time advisories to Air Traffic Control Tower (ATCT) controllers to reduce the number
of aircraft on the taxiways and runway queues while maintaining maximum throughput. This initial concept was
demonstrated and evaluated in human-in-the-loop simulations for the east side of the Dallas/Fort Worth
International Airport (DFW) with retired ATCT controller participants in 201020 and 2012.21 The runway scheduling
algorithm is the primary component of the SARDA concept since it determines the runway times that drive the
computation of spot release or gate pushback times.

This paper looks at the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft
on the airport surface. Constraints for wake vortex separations, departure area navigation (RNAV) separations and
take-off time-window for departures are explicitly considered. We develop a multi-objective dynamic programming
(DP) based algorithm that finds the optimal (exact) solution to the SRS problem. Given the exponential complexity
of the exact DP algorithm, we then employ heuristics in the DP algorithm to find computationally efficient solutions
to the SRS problem. We finally present an algorithm based on a combination of insertion and local search heuristics
and compare it with the DP based algorithms.

II. Problem Setup
The modeling of the runway scheduling procedure depends on the taxiway layout, availability of holding area,

number of spots (entry points to movement area) and runway configuration. In this paper, we consider the Single
Runway Scheduling (SRS) problem. To better explain the SRS problem, consider the illustration provided in Figure
1, which depicts the east side of DFW as an example.

Figure 1. Airport Layout: runway 17R is the runway being scheduled. Arrivals land on 17C and hold at 17R
for crossing. Departures approach runway 17R joining one of the three queues (EF, EG, and EH).

As depicted in the illustration, the SRS algorithm will be applied to control the use of runway 17R by the
departure, crossing and arrival aircraft‡. Arrivals land on 17C, take one of the four exits (M3, M4, M6, M7), and
arrive at the 17R crossing. The SRS algorithm provides the schedule for landing or crossing, though there is a
limited time window to schedule the landing through vectoring and speed control in the terminal airspace. In this

‡ At DFW, runway 17R is not used for arrivals.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

3

paper, we assume that the relative sequences of arrivals cannot be changed. The ramp controller (airline or airport
authority) clears the departure aircraft from the gate to the spot. The “spots” are physical regions on the airport
(shown in blue circles) where control of the aircraft is transferred from the ramp controllers to the FAA Air Traffic
Control Tower (ATCT) controllers. Once released from the spots, the departure aircraft travels along the routes
(shown as yellow straight lines) to runway 17R. Once in the Active Movement Area (AMA), the aircraft on a given
route (including a queue lane) may not overtake each other, i.e., the relative sequence of aircraft in individual routes
are fixed. In Fig. 1, three separate queues are shown for runway 17R. Most of the airports in the US have three or
fewer queues at the runways. In some airports, there may also be holding areas near the runway that allow the
sequences in individual queues to be changed.

The inputs to the SRS algorithm are the following:
1. Spot, surface route, and departure fix or arrival runway exit assigned to each aircraft; The location of the

aircraft on the airport surface imposes precedence constraints on the sequence in which the aircraft can use
the runway. These precedence constraints are handled through a queue structure.

2. The weight class and operation type (take-off, landing or crossing) of each aircraft to be scheduled; This is
used to determine the minimum separation requirements between pairs of aircraft.

3. Individual time-windows of intended landing for arriving aircraft or take-off times for departing aircraft;
This information will be used for handling all arrivals and the subset of departing flights constrained by
traffic management initiatives (e.g. flights under Expected Departure Clearance Time (EDCT) restrictions
due to a Ground Delay Program or Call For Release (CFR) due to local flow management restriction).

Since most airports have a limited number of departure queues (three or less) and the relative sequence of
aircraft in each queue is fixed, one may be incorrectly tempted to assume that obtaining tractable solution times for a
three queue problem may be sufficient for practical application of SRS. This is due to several other nuances of the
problem. First, the landing and crossing aircraft have their own separate queues. Secondly, the SRS algorithm does
not schedule for aircraft in the departure queue and taxiways only, but also for the aircraft that may be at the spots
and/or gates. An aircraft at the spot (or gate) may enter the taxiway in front of (or behind) another aircraft at a
different spot going to the same queue. Indeed, at many airports the ATCT ground controller will actively manage
spot clearance to setup sequences for the local controller who is responsible for aircraft operations at the runway.
Hence each spot must be considered as a possible “virtual queue” at the runway and to correctly solve the SRS, the
algorithm should be able to obtain computationally tractable solution for the problems involving a large number of
queues (in many cases, >10).

III. Single Runway Scheduling Algorithms
We employ three main algorithms for the solution of the SRS problem. The first method is based on a complete

enumeration of the solution space and finds the optimal solution to the problem. This method is computationally
tractable for small instances of the problem only, and hence we develop two heuristic solution techniques to provide
solutions for larger instances. Runway scheduling is a critical component of real-time decision support tools for
ATCT controllers, and consequently, both computation time and solution quality are critical factors in deciding a
solution technique for SRS.

A. Exact Dynamic Programming (EDP) formulation
Dynamic programming is an algorithmic paradigm in which a problem is solved by identifying a collection of

sub-problems and tackling them one by one, smallest first, using the answers to small problems to help figure out
larger ones, until the entire problem is solved. In dynamic programming we are not given a graph; the directed
acyclic graph is implicit. Its nodes are the sub-problems we define, and its edges are the dependencies between the
sub-problems. There are many dynamic programming formulations for various types of runway scheduling.8-13 The
proposed algorithm uses a state definition similar to the one in Ref. [8] and [10] and adds additional information to
the state to handle the constraints specific to SRS.

Let 𝐴,𝐷,𝐶 denote the set of all arrivals, departures and crossing aircraft to be scheduled. Let the total number of
aircraft be 𝑛, i.e., 𝐴 + 𝐷 + 𝐶 = 𝑛. Let 𝔸 = 𝐴 ∪ 𝐷 ∪ 𝐶 denote the set of all aircraft. Let 𝑡 𝑖 ,∀ 𝑖 ∈ 𝔸 be the
decision variable denoting the runway use time (landing time, take-off time or crossing time) for the 𝑖!! aircraft. Let
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑖) identify the operation type, i.e., whether the 𝑖!! aircraft is an arrival, departure or crossing aircraft.
Aircraft 𝑖 can use the runway only after its earliest available time 𝛼(𝑖) and should do so before the latest time 𝛽(𝑖).
In our problem, we assume that the landing time cannot be significantly changed, and we allow only small
perturbations, 𝛿 and constraint the latest times to 𝛽 𝑖 = 𝛼 𝑖 + 𝛿,∀𝑖 ∈ 𝐴. In out simulations, we have used a value

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

4

of 𝛿 = 5 seconds. Moreover, for crossings and departures without time-window constraints there are no latest time
constraints, i.e., 𝛽 𝑖 = ∞.

For departure aircraft, let ℎ𝑒𝑎𝑑(𝑖) denote the heading of an aircraft. For DFW, this takes a value 0 or 1 and is
used to plan for divergent heading operations. Let 𝑡𝑦𝑝𝑒 𝑖 ,∀𝑖 ∈ 𝐷 denote the weight class type of the 𝑖!! aircraft.
Let there be 𝐺 distinct weight classes. The weight class of departures allows us to determine the minimum
separation requirements between pairs of aircraft. If aircraft 𝑖 departs before aircraft 𝑗, where 𝑖, 𝑗 ∈ 𝐷, then they must
be temporally separated by 𝑠𝑒𝑝!(𝑡𝑦𝑝𝑒(𝑖), 𝑡𝑦𝑝𝑒(𝑗)) for 𝑗 to avoid the wake vortex stream from aircraft 𝑖. If
ℎ𝑒𝑎𝑑(𝑖) ≠ ℎ𝑒𝑎𝑑(𝑗) and divergent heading operations are allowed, then aircraft 𝑗 is allowed a reduced separation
given by:

𝑠𝑒𝑝! 𝑡𝑦𝑝𝑒(𝑖), 𝑡𝑦𝑝𝑒(𝑗) − 𝑟𝑛𝑎𝑣(ℎ𝑒𝑎𝑑 𝑖 , ℎ𝑒𝑎𝑑 𝑗 , 𝑡𝑦𝑝𝑒 𝑖 , 𝑡𝑦𝑝𝑒 𝑗)
where 𝑟𝑛𝑎𝑣(…) is the reduction in separation values for divergent heading operations.
For a pair of aircraft 𝑖, 𝑗, if at least one of them belong to the set 𝐶, then the separation between them is given by

𝑠𝑒𝑝!(𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗). A departure must wait until the aircraft crossing the runway has cleared
completely. Similarly, a crossing aircraft must wait until the departure/arrival has cleared the runway. If both 𝑖, 𝑗 ∈
𝐶, there needs to be a separation between any two consecutive crossings.

For a pair of aircraft 𝑖, 𝑗, if at least one of them belong to the set 𝐴, then the separation between them is given by
𝑠𝑒𝑝!(𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗). A departure/crossing must wait until the landing aircraft has cleared the
runway completely. Similarly, a landing can occur only if the departure/crossing has cleared the runway. If both
𝑖, 𝑗 ∈ 𝐴, there needs to be a separation between the two consecutive arrivals. Since we do not change the landing
times (except for small perturbation 𝛿) and the provided initial landing times have the required separation, we can
safely assume that this separation is always satisfied.

Since we do not allow the relative sequence of arrivals to change, they can be considered to form a single virtual
queue ordered by the earliest available times, with the earliest aircraft at the front of the queue. Even though there
are multiple physical crossing queues, the non-dependence of crossings on aircraft types allows for merging the
crossing traffic into a single queue. The departures in the active movement area are assigned to the physical queues
at the runways. The departures in the ramp area are assigned to virtual queues corresponding to their assigned spots.
Departures still at the gates are assigned to virtual queues corresponding to their weight class. Let us suppose that
the aircraft can be assigned to 𝑄 queues. Let the order of the aircraft in the 𝑖!! queue be denoted by the sequence
(𝑎!! , 𝑎!! , 𝑎!! ,… , 𝑎!!

!) where 𝑘! is the size of the 𝑖!! queue. The queue is ordered with 𝑎!!
! at the front of the queue with

𝑎!! > 𝑎!! > 𝑎!! ,> ⋯ > 𝑎!!
! . This queue structure imposes implicit precedence constraints on the aircraft. Let the

initial size of each queue be 𝑞! , 𝑖 = 1,… ,𝑄.
A state 𝑆 = (ℎ,𝑤𝑐, 𝑜𝑝, 𝑘!, 𝑘!, 𝑘! ,… , 𝑘!)§ is defined by the heading of the last departure ℎ, the weight class of

the last departure 𝑤𝑐, the last operation type 𝑜𝑝, and the number of aircraft remaining in each queue. Depending on
the sequence history, each state may be associated with multiple partial schedules/sequences. We denote a state 𝑆
with a partial sequence 𝑠 by 𝑆!. For example, suppose queues 1 and 2 contain departures and the aircraft at the head
of the two queues have the same weight class and heading. Consider two possible partial solutions for the algorithm;
‘𝑠!’ where it picks aircraft from queue 1 followed by queue 2, 𝑎𝑛𝑑 ‘𝑠!’ where the order is reversed. In both these
cases, the state corresponding to the two partial solutions is the same state 𝑆! = ℎ!,𝑤𝑐!,𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, 𝑞! − 1, 𝑞! −
1, 𝑞!,… , 𝑞! . In this formulation, each state may contain a large number of solutions.

To check the quality of solutions in each state and to remove inferior partial sequences, a multi-objective cost
criteria is used. It consists of three components,

1. 𝐿𝑎𝑠𝑡 𝑆! : Last time a departure took off in the partial sequence 𝑠 corresponding to state 𝑆.
2. 𝑆𝑝𝑎𝑛(𝑆!): Makespan corresponding to the last time the runway was used for landing, crossing or take-

off in the partial sequence 𝑠 corresponding to state 𝑆.
3. 𝐷𝑒𝑙𝑎𝑦 𝑆! : Total delay of all the aircraft in the partial sequence 𝑠 corresponding to state 𝑆. It is

equivalent to (𝑡 𝑖 − 𝛼 𝑖)!∈! .
A stage is defined as the set of solutions whose partial sequences are the same size. We initialize our algorithm

with an initial state 𝑆! = (0, 0, 0, 𝑞!, 𝑞!,… , 𝑞!) with the costs initialized to 𝐷𝑒𝑙𝑎𝑦 𝑆! = 0, 𝑆𝑝𝑎𝑛 𝑆! = 0 and
𝐿𝑎𝑠𝑡 𝑆! = −∞. We next show how we can recursively progress from one stage to another and discuss how the
cost vectors get updated.

§ If there are no arrival landings, we can use a reduced state 𝑆 = (ℎ,𝑤𝑐, 𝑘!, 𝑘!, 𝑘! ,… , 𝑘!)

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

5

Suppose we are provided with 𝑆!!
! = (ℎ!,𝑤𝑐!, 𝑜𝑝!, 𝑘!! , 𝑘!! ,… , 𝑘!!) and an aircraft from queue 𝑙 uses the runway

and the partial solution 𝑠′ gets updated to a new sequence 𝑠. The new sequence 𝑠 = (𝑠!, 𝑎!!
!) corresponds to a new

state 𝑆! = (ℎ,𝑤𝑐, 𝑜𝑝, 𝑘!, 𝑘!,… , 𝑘!),
where 𝑜𝑝 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑎!!

!) and for each queue 𝑖 = 1,… ,𝑄,

𝑘! =
𝑘!! − 1, if 𝑖 = 𝑙,
𝑘!!, otherwise,

and

ℎ =
ℎ! if 𝑎!!

! is not a departure,
ℎ𝑒𝑎𝑑(𝑎!!

!) if 𝑎!!
! is a departure,

and

𝑤𝑐 =
𝑤𝑐! if 𝑎!!

! is not a departure,
𝑡𝑦𝑝𝑒(𝑎!!

!) if 𝑎!!
! is a departure.

Before we provide recursive formulas for the cost vectors, let us define a couple of auxiliary variables:
If 𝑎!!

! is a departure, then let the departure time 𝑑𝑒𝑝_𝑡𝑖𝑚𝑒 be defined as

𝑑𝑒𝑝_𝑡𝑖𝑚𝑒 =

max (𝐿𝑎𝑠𝑡 𝑆!!
! + 𝑠𝑒𝑝! 𝑤𝑐!,𝑤𝑐 , 𝑆𝑝𝑎𝑛 𝑆!!

! + 𝑠𝑒𝑝! 𝑜𝑝!, 𝑜𝑝 ,𝛼 𝑎!!
!)

max (𝐿𝑎𝑠𝑡 𝑆!!
! + 𝑠𝑒𝑝! 𝑤𝑐!,𝑤𝑐 , 𝑆𝑝𝑎𝑛 𝑆!!

! + 𝑠𝑒𝑝! 𝑜𝑝!, 𝑜𝑝 ,𝛼 𝑎!!
!)

𝑖𝑓 𝑜𝑝! = 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔,
𝑖𝑓 𝑜𝑝! = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙,

max (𝐿𝑎𝑠𝑡 𝑆!!
! + 𝑠𝑒𝑝! 𝑤𝑐!,𝑤𝑐 − 𝑟𝑛𝑎𝑣(ℎ′, ℎ,𝑤𝑐′,𝑤𝑐),𝛼 𝑎!!

!) 𝑖𝑓 ℎ ≠ ℎ,
max (𝐿𝑎𝑠𝑡 𝑆!!

! + 𝑠𝑒𝑝! 𝑤𝑐!,𝑤𝑐 ,𝛼 𝑎!!
!) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

and if 𝑑𝑒𝑝_𝑡𝑖𝑚𝑒 > 𝛽 𝑎!!
! , then set 𝑑𝑒𝑝_𝑡𝑖𝑚𝑒 = ∞.

If 𝑎!!
! is an arrival, then let the landing time 𝑎𝑟𝑟_𝑡𝑖𝑚𝑒 be defined as

𝑎𝑟𝑟_𝑡𝑖𝑚𝑒 = max (𝑆𝑝𝑎𝑛 𝑆!!
! + 𝑠𝑒𝑝! 𝑜𝑝!, 𝑜𝑝 ,𝛼 𝑎!!

!)
and if 𝑎𝑟𝑟_𝑡𝑖𝑚𝑒 > 𝛽 𝑎!!

! , then set 𝑎𝑟𝑟_𝑡𝑖𝑚𝑒 = ∞.
 With the two new variables defined above, it becomes easier to write the recursion for the cost function values.
We can calculate the last departure time using the following recursion,

𝐿𝑎𝑠𝑡 𝑆! = 𝐿𝑎𝑠𝑡 𝑆!!
! 𝑖𝑓 𝑜𝑝 ≠ 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒,

𝑑𝑒𝑝_𝑡𝑖𝑚𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Furthermore, we can calculate the makespan using

𝑆𝑝𝑎𝑛 𝑆! =
max (𝑆𝑝𝑎𝑛 𝑆!!

! + 𝑠𝑒𝑝! 𝑜𝑝!, 𝑜𝑝 ,𝛼 𝑎!!
!) 𝑖𝑓 𝑜𝑝 = 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

𝐿𝑎𝑠𝑡 𝑆! 𝑖𝑓 𝑜𝑝 = 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
𝑎𝑟𝑟_𝑡𝑖𝑚𝑒 𝑖𝑓 𝑜𝑝 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙

Delay is calculated as
𝐷𝑒𝑙𝑎𝑦 𝑆! = 𝐷𝑒𝑙𝑎𝑦 𝑆!!

! + 𝑆𝑝𝑎𝑛 𝑆! − 𝛼 𝑎!!
! .

Elimination Step: Consider two partial solutions 𝑠 and 𝑠′ corresponding to the same state 𝑆. If 𝐷𝑒𝑙𝑎𝑦 𝑆! ≤

𝐷𝑒𝑙𝑎𝑦 𝑆!!
! , 𝑆𝑝𝑎𝑛 𝑆! ≤ 𝑆𝑝𝑎𝑛 𝑆!!

! and 𝐿𝑎𝑠𝑡 𝑆! ≤ 𝐿𝑎𝑠𝑡 𝑆!!
! and at least one of the three is a strict inequality,

then we say that 𝑠 dominates 𝑠′. The partial solution 𝑠′ can be removed from the possible solutions. A partial
solution 𝑠 in state 𝑆 is also removed if any of the cost values is infinite.

Starting from the initial solution 𝑆! at stage 0, we recursively go through n stages of the DP. In the final stage we
have states of the form 𝑆! = (ℎ,𝑤𝑐, 𝑜𝑝, 0, 0,0,… ,0) with all queues being empty. Among all the pareto-optimal
solutions in the last stage, we choose the solution with the least delay cost as our preferred solution.

B. Restricted Dynamic Program (RDP) heuristics formulation
The EDP algorithm described in the previous section is analogous to a breadth first search of the solution space.

The number of nodes in the solution space is bounded by 2!!! (𝑘! + 1)
!
!!! . The elimination step of the EDP

algorithm eliminates those nodes that are dominated by other nodes. Even with the elimination of a significant
number of states, some stages of the exact DP formulation of the SRS could have a large number of states for
moderately sized scenarios. To avoid the large number of states of the EDP, a restricted DP heuristic algorithm is
applied. This heuristic was first proposed for the Traveling Salesman Problem.22 In each stage of the Restricted

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

6

Dynamic Program (RDP), only a restricted subset of H states with the smallest delay is kept. Increasing the value of
H should yield better solutions, but will also result in higher computation times. We deploy three variants of the
algorithm with the value of H set to 10,000, 20,000, and 30,000, respectively.

C. Insertion and Local Search (ILS) heuristics
In this section, a heuristic with fast computation time that produces good quality solutions for the SRS is

explained. This heuristic was used in the human-in-the-loop evaluation of SARDA concept in 2012.21 The heuristic
starts with a feasible First Come First Served (FCFS) sequence of runway use. The heuristic then progresses along
this initial sequence, in the 𝑖!! iteration fixes the first 𝑖 aircraft in the sequence, and then does a local neighborhood
search on the remainder of the sequence. It iteratively inserts the best aircraft from the non-fixed part to the fixed
part of the sequence. Based on the heuristics employed, we call this algorithm the Insertion and Local Search (ILS)
algorithm.

A few notations are presented before discussing the ILS algorithm. Consider a feasible sequence
𝐻 = 1, 2, 3,… , 𝑛 of n aircraft. Let 𝑡 𝑖 be the runway use time of the 𝑖!! aircraft in the sequence; 𝑡 𝑖 can be
calculated in polynomial time. The runway use time is the earliest time that satisfies all the time-window and
separation constraints and constitutes a solution to SRS. Let 𝐷𝑒𝑙𝑎𝑦 𝐻 = (𝑡 𝑖 − 𝛼 𝑖)!∈! and 𝑆𝑝𝑎𝑛 𝐻 =
𝑚𝑎𝑥!∈!𝑡(𝑖) be the objective values corresponding to this solution. A sequence 𝐻! is preferred over a sequence 𝐻!

• if 𝐷𝑒𝑙𝑎𝑦 𝐻! < 𝐷𝑒𝑙𝑎𝑦 𝐻! ,
• or 𝐷𝑒𝑙𝑎𝑦 𝐻! = 𝐷𝑒𝑙𝑎𝑦 𝐻! and 𝑆𝑝𝑎𝑛 𝐻! < 𝑆𝑝𝑎𝑛(𝐻!).

This allows for comparison of two runway sequences and chooses the one that reduces overall delay, or in cases
with identical delay selects the one with lower makespan. The preference of 𝐻! over 𝐻! is represented concisely as
𝐻! ≺ 𝐻!.

Let 𝐻!!! denote a feasible sequence of n aircraft comprised of two subsequences 𝐻!!"#$,𝐻!"## of size 𝑖 and
𝑛 − 𝑖 , respectively.

Given a sequence 𝐻!!! = (𝐻!"#$% ,𝐻!"##), a subsequence 𝐻!_!"## is said to be in the neighborhood of 𝐻!"#$% if
(1) the sequence (𝐻!"#$% ,𝐻!_!"##) is feasible and, (2) 𝐻!_!"## can be constructed using a permutation of the first 𝑘
aircraft of 𝐻!"## with the other aircraft retaining its position. Let the neighborhood be denoted by 𝒩 𝐻!"#$% .

The heuristic starts with a feasible First Come First Served (FCFS) sequence of runway use. If no time-window
constraints are considered, then the FCFS sequence is easy to construct. It is the ordered list of aircraft sorted by
their earliest available times. Addition of landing aircraft and/or departures with time-window restrictions can make
the computation of the FCFS sequence tricky, since sorting by the earliest available times may give rise to an
infeasible sequence. In this case, a FCFS solution is generated by first considering the time-window constrained
aircraft and assigning them a runway use time. The other aircraft are then sorted and sequentially inserted, in
ascending order, into the solution to the first available slots while ensuring that it does not cause any conflicts with
the aircraft previously considered in the solution. This modified FCFS solution is then used as the initial solution to
the algorithm.

ILS Algorithm:
1. The feasible sequence obtained from a FCFS algorithm is used as the initial sequence 𝐻!. Initialize parameter k

to define the neighborhood of a sequence. Initialize 𝑛𝑢𝑚_𝑠𝑤𝑎𝑝𝑠 to a non-zero integer (=1).
2. Do the following as long as 𝑛𝑢𝑚_𝑠𝑤𝑎𝑝𝑠 is greater than zero.

• Set 𝑛𝑢𝑚_𝑠𝑤𝑎𝑝𝑠 =0
• For 𝑖 ranging from 1 to 𝑛 − 𝑘

• Set 𝐻!!! = 𝐻!
• Let 𝐻! = 𝐻!"#$% ,𝐻!"##
• Construct the k-swap neighborhood 𝒩 𝐻!"#$%
• For each subsequence 𝐹 ∈ 𝒩 𝐻!"#$%

• Set 𝐻!! = (𝐻!"#$% ,𝐹)
• If 𝐻!! ≺ 𝐻!!!

• Set 𝐻!!! = 𝐻!!
• Increment 𝑛𝑢𝑚_𝑠𝑤𝑎𝑝𝑠 by 1

The algorithm finds a local minima corresponding to the initial sequence and the parameter 𝑘.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

7

IV. Results
In the previous section, three algorithms were provided for the SRS problem. Runway scheduling is an important

component of any surface decision support tool and requires an algorithm that produces good quality solutions
quickly. In this section, we conduct a comparative study of the three algorithms to determine the suitability of the
algorithms for a real-time decision support tool. The algorithms are referred to as EDP (the exact/optimal solution),
RDP10K (restricted dynamic programming with 10,000 states), RDP20K (restricted dynamic programming with
20,000 states), RDP30K (restricted dynamic programming with 30000 states), and ILS (insertion and local search
heuristics). We have used a value of 𝑘 = 7, for the ILS algorithms.

In our simulations, we considered only the east side of the DFW airport operating in South Flow configuration
(see Fig. 1). Since runway 17R is not used for arrival landings, we considered only departures and runway
crossings. For this study, a planning window of 15 minutes was selected. Each scenario has 20 departures and 15
arrivals, and represents a heavy traffic condition. The earliest available times (𝛼!) were uniformly distributed within
0-900 seconds. The fleet mix distributions were chosen to represent traffic at DFW, with 80% of weight-class Large,
10% of class Heavy and 10% of B75x. The wake vortex separation matrix, given in Table 1, was used for the
simulations. The columns represent the weight class for leading aircraft whereas the rows represent the following
aircraft. For example, if a large aircraft follows a heavy aircraft, then they must be separated by 90 seconds. The
departures were randomly assigned a heading value of 0 or 1. Non-heavy departures to different headings require a
reduced separation as part of divergent heading operations. This reduction was empirically observed to be around 6
seconds. For example, two departures of weight class large to divergent heading require a separation of 39 seconds.
Arrivals can cross runway 17R 40 seconds after a departure takes off and take 21 seconds to clear the runway. If two
arrivals cross the runway consecutively, the temporal separation between them is 6 seconds.

Table 1. Wake vortex separation (in seconds) for departure aircraft.
 Heavy Large B75x

Heavy 70 90 90
Large 45 45 45
B75x 70 70 70

Although there are four separate queues for runway crossing, they can be merged into a single virtual queue.

There are also three physical departure queues at runway 17R. The aircraft in each queue have implicit precedence
constraints imposed on them. Since we are looking at a 15-minute planning window, some of the departure aircraft
could still be at the spots or gates. Two aircraft at different spots do not have a precedence constraint even if they are
going to the same physical queue at the runway. Anecdotal evidence also suggests that the ATCT ground controller
tries to setup an efficient sequence for the local controller. Hence each spot is considered as a possible “virtual
queue” at the runway. To correctly solve the SRS, the algorithm should be able to obtain computationally tractable
solutions for problems involving a large number of queues. To study the effect of increasing the number of queues
on the algorithms, scenarios were generated with varying numbers of queues (from 3 to 10) with hundred different
scenarios generated for each queue number. The arrivals (crossing) were assigned to a single queue, and the
departures were randomly assigned to the other queues.

A. Computation times
Figures 2 and 3 show the computation time of the different algorithms with respect to the number of queues.

Each point shows the average time (in msec) for an algorithm to obtain the solution for the 100 random scenarios.
The graph shows that the EDP provides fast solutions for small queue sizes (<6 queues), but grows exponentially as
the number of queues increases. The variations in computation times of the different heuristic algorithms are also
shown in Figure 3. The RDP solution time increases with increasing H (the number of states kept in each stage of
the DP). The ILS algorithm has a nearly constant solution time irrespective of the number of queues. Figure 3 also
shows that the RDP10K heuristics starts restricting the search space at a queue number of 6, RDP20K at a queue
number of 7 and RDP 30K at a queue number of 8. Based on the RDP algorithm, the increase in computation time
after this point is expected to be linear and the data shows the same.

In NASA’s human-in-the-loop simulation, the runway schedule was calculated every 10 seconds. For large
queue numbers we find that ILS and RDP10K are the two algorithms that meet the computation time requirement of
providing a solution within 10 seconds.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

8

Figure 2. Computation time for the algorithms. Each point denotes the average value over 100 different
scenarios.

Figure 3. Computation time for the heuristic algorithms. Each point denotes the average value over 100
different scenarios, and the whiskers represent 10th and 90th percentile.

B. Quality of heuristic solution
The solutions of the heuristic algorithms (RDP and ILS) are compared to the optimal solution from the EDP

algorithm. For each solution, the total delay of all the aircraft are computed and the percentage difference from the
optimal solutions is calculated. Reference [5] shows that optimizing for total delay results in small deviations from
the optimal throughput, whereas optimizing for throughput results in large deviations in total delay. For this reason,
total delay was chosen as the objective for the scheduler.

These results are plotted in Fig. 4. For each queue number, the algorithms were applied to 100 scenario
instances, and each point represents the average percentage difference in total delay from EDP’s delay values for the
respective algorithm. The whiskers represent the 10th and 90th percentiles. On average the RDP solutions get worse
with increasing queue number, whereas the ILS algorithm consistently produces solutions that are within 10% of the
optimal. From this graph, it is evident that for large queue sizes (>6), ILS solutions are of much higher quality than
the others.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

9

Figure 4. The percent difference of total delay from the optimal delay as a function of queue number.

V. Conclusion
In this paper, we formulated three algorithms for Single Runway Scheduling of airport surface traffic: Exact

Dynamic Programming (EDP); Restricted Dynamic Programming (RDP); and Insertion and Local Search (ILS). A
comparative study of the three algorithms was conducted by performing simulations for the east side of the
Dallas/Fort Worth International Airport (DFW). For the cases with more than six queues the ILS heuristics
performed significantly better than the other algorithms and produced good quality solutions in a relatively short
computation time. Based on the presented results, we can conclude that among the three algorithms, the ILS
heuristics is the most suitable candidate for application in tactical surface decision support tools.

References
1Idris, H., Delcaire, B., Anagnostakis, I., Hall, W. D., Pujet, N., Feron, E., et al., “Identification of Flow Constraint and

Control Points in Departure Operations at Airport Systems,” AIAA Guidance, Navigation, and Control Conference and Exhibit,
Boston, MA, Aug. 10-12, 1998.

2Bianco, L., Rinaldi, G., Sassano, A., delle Ricerche, C.N. and Manzoni, V., “A Combinatorial Optimization Approach to
Aircraft Sequencing Problem,” Flow Control of Congested Networks, edited by A. R. Odoni, L. Bianco, and G. Szego¨, NATO
ASI Series, Series F: Computer and Systems Science 38, 323–339, Springer-Verlag, Berlin, 1987.

3Bianco, L., Ricciardelli, S., Rinaldi, G. and Sassano, A., “Scheduling Tasks with Sequence-Dependent Processing Times,”
Naval Research Logistics, Volume 35, Number 2, 177–184, 1988.

4Bianco, L. and Bielli, M., “System Aspects and Optimization Models in ATC Planning,” Large Scale Computation and
Information Processing in Air Traffic Control, edited by L. Bianco and A. R. Odoni, 47–99, Springer-Verlag, Berlin, 1993.

5Gupta, G., Malik, W., and Jung, Y. C., “A Mixed Integer Linear Program for Airport Departure Scheduling,” 9th AIAA
Aviation Technology, Integration, and Operations Conference (ATIO), AIAA, Hilton Head, South Carolina, 2009.

6Gupta, G., Malik, W., and Jung, Y. C., “Incorporating Active Runway Crossings in Airport Departure Scheduling,” AIAA
Guidance, Navigation, and Control (GNC) Conference, Toronto, Canada, 2010.

7Brinton, C. R., “An Implicit Enumeration Algorithm for Arrival Aircraft Scheduling,” In Proceedings of the IEEE/AIAA
11th Digital Avionics Systems Conference, Seattle, WA, 1992.

8Psaraftis, H. N., “A Dynamic Programming Approach for Sequencing Groups of Identical Jobs,” Operations Research, pp.
1347-1359, Vol. 28, No. 6, 1980.

9Trivizas, D. A., “Optimal Scheduling with Maximum Position Shift (MPS) Constraints: A Runway Scheduling
Application,” Journal of Navigation, 51:250–266, 1998.

10Balakrishnan, H., & Chandran, B., “Scheduling Aircraft Landings Under Constrained Position Shifting,” AIAA Guidance,
Navigation and Control Conference and Exhibit, Keystone, CO, 2006.

11Balakrishnan, H., and Chandran, B., “Efficient and Equitable Departure Scheduling in Real-time: New Approaches to Old
Problems,” 7th USA - Europe Air Traffic Management Research and Development Seminar, Barcelona, Spain, 2007.

12Rathinam, S., Wood, Z., Sridhar, B., and Jung, Y. C., “A Generalized Dynamic Programming Approach for a Departure
Scheduling Problem,” AIAA Guidance, Navigation, and Control (GNC) Conference, Chicago, IL, 2009.

13Montoya, J., Rathinam, S. and Wood, Z., “Multiobjective Departure Runway Scheduling Using Dynamic Programming,”
IEEE Transactions on Intelligent Transportation Systems, 15(1), pp.399-413, 2014.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

American Institute of Aeronautics and Astronautics

10

14Dear, R. G., and Sherif, Y. S., “Dynamic Scheduling of Aircraft in High Density Terminal Areas,” Microelectronics
Reliability, pp. 743-749, Vol. 29, No. 5, 1989.

15Bianco, L., Dell’Olmo, P., and Giordani, S., “Minimizing Total Completion Time Subject to Release Dates and Sequence-
Dependent Processing Times,” Annals of Operations Research, 86:393–415, 1999.

16Stiverson, A. W., “A Study of Heuristic Approaches for Runway Scheduling for the Dallas-Fort Worth Airport,” Master’s
thesis, Texas A&M University, USA, 2009.

17Atkin, J.A.D., Burke, E.K., Greenwood. J.S., and Reeson, D., “A metaheuristic approach to aircraft departure scheduling at
London Heathrow airport,” 9th International Conference on Computer-Aided Scheduling of Public Transport, San Diego, CA,
USA, 2004.

18Atkin, J. A. D., Burke, E. K., Greenwood, J. S., and Reeson, D., ”An Examination of Take-Off Scheduling Constraints at
London Heathrow Airport,” In Electronic proceedings of the 10th International Conference on Computer-Aided Scheduling of
Public Transport, 2006.

19Bennell, J. A., Mesgarpour, M., and Potts, C. N., “Airport runway scheduling,” Annals of Operations Research, 204(1),
249-270, 2013.

20Jung, Y., Hoang, T., Montoya, J., Gupta, G., Malik, W., Tobias, L., and Wang, H., “Performance Evaluation of a Surface
Traffic Management Tool for Dallas/Fort Worth International Airport,” the Ninth USA/Europe Air Traffic Management
Research and Development Seminars, Berlin, Germany, June 2011.

21Gupta, G., Malik, W., Tobias, L., Jung, Y., Hoang, T., and Hayashi, M., “Performance Evaluation of Individual Aircraft
Based Advisory Concept for Surface Management,” the Tenth USA/Europe Air Traffic Management Research and Development
Seminars, Chicago, IL, June 2013.

22Malandraki C., and Dial, R.B., “A restricted dynamic programming heuristic algorithm for the time dependent traveling
salesman problem,” European Journal of Operational Research, Vol. 90, pp. 45–55, 1996.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
A

ug
us

t 1
7,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
72

